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Uncertainty 1

Uncertainty is a distinguished feature of valuation
usually modelled as different future states of
nature ω with corresponding cash flows F̃CF t(ω).

But: to the best of our knowledge particular states
of nature play no role in the valuation equations of

firms, instead one uses expectations E
[
F̃CF t

]
of

cash flows.
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Information 2

Fortune–teller

Today is certain, the future is uncertain.

Now: we always stay at time 0!

And think about the future

-

0 t s

F̃CF s

today future later future
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A finite example 3

110

90

132

110

88

193.6

96.8

145.2

48.4

time
t = 0 t = 1 t = 2 t = 3

There are three points in
time in the future.

Different cash flow
realizations can be
observed.

The movements up and
down along the path
occur with probability
0.5.
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Actual and possible cash flow 4

Nostradamus (1503–1566),

failed fortune-teller

What happens if actual cash flow at time t = 1 is
neither 90 nor 110 (for example, 100)?

Our model proved to be wrong!
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Expectations 5

A.N. Kolmogorov (1903–1987),

founded theory of

conditional expectation

Let us think about cash flow paid at time
t = 3, i.e. F̃CF 3. What will its
expectation be tomorrow?

This depends on the state we will have
tomorrow. Two cases are possible:
F̃CF 1 = 110 or F̃CF 1 = 90.
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Thinking about the future today 6

Case 1 (F̃CF 1 = 110)

=⇒ Expectation of F̃CF 3 =
1

4
×193.6+

2

4
×96.8+

1

4
×145.2 = 133.1.

Case 2 (F̃CF 1 = 90)

=⇒ Expectation of F̃CF 3 =
1

4
×96.8+

2

4
×145.2+

1

4
×48.4 = 108.9.

Hence, expectation of F̃CF 3 is

E
[
F̃CF 3|F1

]
=

{
133.1 if the development at t = 1 is up,

108.9 if the development at t = 1 is down.
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Conditional expectation 7

The expectation of F̃CF 3 depends on the state of nature at time
t = 1. Hence, the expectation is conditional: conditional on the
information at time t = 1 (abbreviated as |F1).

A conditional expectation covers our ideas about future thoughts.

This conditional expectation can be uncertain.
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Rules 8

Arithmetic textbook of

Adam Ries (1492–1559)

How to use conditional expectations? We
will not present proofs, but only rules for
calculation.

The first three rules will be well-known
from classical expectations, two will be
new.

2.2 Conditional expectation, 2.2.2 Rules



Rule 1: Classical expectation 9

E
[
X̃ |F0

]
= E

[
X̃
] At t = 0 conditional expectation and

classical expectation coincide.

Or: conditional expectation generalizes
classical expectation.
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Rule 2: Linearity 10

E
[
aX̃ + bỸ |Ft

]
= aE

[
X̃ |Ft

]
+ b E

[
Ỹ |Ft

]
Business as usual . . .
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Rule 3: Certain quantity 11

E [1|Ft ] = 1 Safety first. . .

From this and linearity for certain quantities X ,

E [X |Ft ] = E [X1|Ft ]

= X E [1|Ft ]

= X
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Rule 4: Iterated expectation 12

Let s ≥ t then

E
[
E
[
X̃ |Fs

]
|Ft

]
= E

[
X̃ |Ft

] When we think today about
what we will know tomorrow
about the day after tomorrow,

we will only know what we
today already believe to know
tomorrow.
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Rule 5: Known or realized quantities 13

If X̃t is known at time t

E
[
X̃tỸ |Ft

]
= X̃t E

[
Ỹ |Ft

]
We can take out from the
expectation what is known.

Or: known quantities are
like certain quantities.
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Using the rules 14

We want to check our rules by looking at the finite example and an
infinite example. We start with the finite example:

Remember that we had

E
[
F̃CF 3|F1

]
=

{
133.1 if up at time t = 1 ,

108.9 if down at time t = 1 .

From this we get

E
[
E
[
F̃CF 3|F1

]]
=

1

2
× 133.1 +

1

2
× 108.9 = 121.
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Finite example 15

And indeed

E
[
E
[
F̃CF 3|F1

]]
= E

[
E
[
F̃CF 3|F1

]
|F0

]
by rule 1

= E
[
F̃CF 3|F0

]
by rule 4

= E
[
F̃CF 3

]
by rule 1

= 121 !
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An important remark 16

It seems purely by chance that

E
[
F̃CF 3|F1

]
= 1.13−1 × F̃CF 1 ,

but it is on purpose! This will become clear later (when discussing
autoregressive cash flows).
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Infinite example 17

F̃CF t

u F̃CF t

d F̃CF t

u2F̃CF t

ud F̃CF t

d2F̃CF t

-
time

t t+1 t+2

Again two factors up and
down with probability pu
and pd and 0 < d < u

or

F̃CF t+1 =

{
uF̃CF t up,

dF̃CF t down.
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Infinite example 18

Let us evaluate the conditional expectation

E
[
F̃CF t+1|Ft

]
= puuF̃CF t + pddF̃CF t

= (puu + pdd)︸ ︷︷ ︸
:=1+g

F̃CF t ,

where g is the expected growth rate.

If g = 0 it is said that the cash flows ’form a martingal’. In the
infinite example we will later assume no growth (g = 0).

2.2 Conditional expectation, 2.2.3 Finite example cont.



Infinite example 19

This can be extended if s > t

E
[
F̃CF s |Ft

]
= E

[
E
[
F̃CF s |Fs−1

]
|Ft

]
by rule 4

= E
[
(1 + g)F̃CF s−1|Ft

]
see above

= (1 + g) E
[
F̃CF s−1|Ft

]
by rule 2

= (1 + g)s−t E
[
F̃CF t |Ft

]
repeating argument

= (1 + g)s−t F̃CF t by rule 5 and rule 3
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Summary 20

We always stay in the present. Conditional expectation handles our
knowledge of the future.

Five rules cover the necessary mathematics.

2.2 Conditional expectation, 2.2.3 Finite example cont.
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